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A Two-Dimensional Fokker-Pianek Equation 
Degenerating on a Straight Line 
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By an example of a two-dimensional hydrodynamic system, second-order 
Langevin equations with two correlated noise sources are investigated. It is 
shown that the asymptotic expression ( t - ,  oe) for the stationary distribution 
function P depends on the order in which the limiting transitions t ~ ov and 
N22 ~ 0 (N22 is the power of one of the noises) are made. Using the method of 
local expansions in trigonometric form, approximate expressions are written for 
the distribution function P at small but finite N22 tending at N22 ~ 0  to the 
known exact solution. 

KEY WORDS: Noise in dynamic systems; bifurcations; Fokker-Planck 
equations; degenerating parabolic-type equations. 

1. I N T R O D U C T I O N  

Much work investigating the influence of noise perturbations on nonlinear 
systems has been devoted to the particular but practically important case 
of low noise, which permits the employment of various methods relying on 
the presence of a small parameter (the formulation of many problems and 
a review of the principal results are given in the classical monograph by 
Wentzel and Freidlin~l)). However, all this works consisders the case of 
uniformly low noise, i.e., all the diffusion tensor components in the 
Fokker-Planck equation are proportional to the small parameter 
e - / }  =etT. With a nonuniform tendency to zero of the diffusion tensor 
components (as well as in the case of degeneracy, det/5 ~ 0), new effects 
are possible which are not observed in the uniform case. The following may 
be expected On diagonalization of the diffusion tensor the nonuniform 
tendency of its components to zero (or degeneration) will mean that some 
diagonal elements tend to zero faster than others (or, in the case of 
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degeneration, they simply tend to zero while the remaining components do 
not tend to zero at all). This leads to the fact that in the phase space in the 
limit hyperplanes will arise transverse to which the noises do not act and 
the possibility of transition through such a plane will be determined by the 
noiseless side of the Langevin equations. But if the latter is such that the 
hyperplane arising in the limit becomes an unreachable boundary, the 
result of transition to the steady state must depend on the order of the 
limiting transitions: at small but finite elements of the nondegenerate 
diffusion tensor the system with t--* ~ manages to spread throughout the 
phase space. In the opposite case, where the diagonal components of the 
diffusion tensor tend to zero prior to transition to the steady state, the 
system will always remain in the region bounded by the above-mentioned 
hyperplanes, which will be unreachable boundaries for this system. 

The present paper considers the above questions by the example of a 
problem taken from the hydrodynamics of vortex flows in ellipsoidal 
containments (2/ with regard to fluctuations. The equations for Vo, vl, and 
v2 of dimensionless lower modes of flow rates 

5 o = V ~ - V ~ - v o  + R + fo( t )  

[}1 = V0Vl - -  Vl "l- f l ( t )  ( I )  

02 = -VoV2 - v2 + f2( t )  

can be derived by applying the Galerkin procedure to the Helmholtz 
equation for the vortex motion of an ideal incompressible liquid inside an 
unequiaxal ellipsoid. Here R is the analog of the Reynolds number and fo, 
f l ,  and f2 are fluctuation (5-correlated sources. Obukhov (2) has substan- 
tiated the application of such a single-parameter three-mode model. The 
field of application of the above simple model of fluctuation sources has 
been discussed by Klyatskin and Glukhovsky. (3) 

The results presented in the sections that follow relate to a two-dimen- 
sional particular case of (I) where the component v 2 is not excited. In the 
new variables, which are more convenient for the calculation, Eqs. (I) take 
the form 

21 = M -  X l -  X~ + rlx~ 
(n) 

"~2 = X l  " X2 q- qx2 

where 

M = R - - 1 ,  xl  = Vo-  1, x 2 = v l ,  (qxl ( t ) }  = (~x2(t)}  = 0 

(q{~z}(t )  q{x12}(t') } = N { ~ }  (5(t -  t') 

<~xl(t) Ux2(t') > = N12(5(t-- t') 
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Such a particular case corresponds to Burger's model of the appearance of 
pulsations in a flow, where xl and x2 relate respectively to the main flow 
and pulsations. Equations (II) are classified among the simple nonlinear 
quadratic systems in which bifurcations in the absence of noise have 
received much study (see, for example, ref. 4). 

The present paper has resulted from an attempt to obtain an 
approximate stationary distribution function which at N22 (and arbitrary 
NH) goes over into the exact solution obtained by Klyatskin and 
Glukhovsky (3) for the particular case of N22 = 0. We give this solution in 
our notation, correcting an error in ref. 3 (where the modules sign is 
missing): 

e = NIx21M/Nll--1 e x p [ -  (x~ + + x~)/2N11 ] (III) 

In ref. 5 a stationary distribution function is formed that does not go into 
expression (III) at N22 ~ 0. The question arises: to which situation does the 
solution (III) correspond and how one obtained an approximate 
expression for P that tends to (III) at N22 ~ 0? The present paper gives the 
answers to these questions. It is shown that the stationary solution (III) 
can be obtained from the complete nonstationary solution with the 
following order of limiting transitions: l i m , ~  limN22~o P(t, x~, x2, NI~, 
N12, N22), whereas the solution obtained in ref. 5 conforms to the limiting 
transition lim,~ ~ P(t, Xl, x2, NIl,  N12 , N22), so that the attempt to derive 
(III) from it conforms to the reverse order of limiting transitions compared 
to the former case, limu22~ 0 l im,_ ~ P(t, Xl, x2, NH, N~2, N22). These two 
limits differ. This difference is due to the degeneration of the Fokker-  
Planck equation on the line x2 = 0 at N22 = 0. In this case the phase space of 
the system of subdivided into two independent components in the sense 
that if at the initial instant of time the system is in one of these halves, then 
it will remain there at all subsequent instants. From this it follows, among 
other things, that the method used in ref. 5 is totally unsuited for obtaining 
an approximate expression for P tending to (III) at N22--. 0, since it does 
not permit the boundary conditions to be specified, which, in the given 
case, must be chosen such that in the limit, P possesses a line of zeros 
x2 = 0 which is present in expression (III). 

Therefore, to answer the second question, we used the local method 
proposed in ref. 6, which enables one to specify the required boundary con- 
ditions. Approximate expressions for P have been obtained which tend to 
(III) at N22--*0 and are classified according to the solution of the 
corresponding problem of the first passage to the degeneration line (thus, 
they can be regarded as intermediate asymptotics for given times of the 
nonstationary distribution function). This situation is, in a sense, 
anologous to that which arises when approximate expressions are obtained 
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for the passage time of the boundaries with all the noise powers uniformly 
tending to zero (v) when the determination of asymptotic expansion 
constants requires a knowledge of the stationary distribution function. In 
the present case, conversely, the intermediate asymptotics is classified 
according to the problem of the first passage time. As will be seen from the 
following, the majority of the results do not depend on particular details of 
the physical problem in question, a hydrodynamic type system. They are 
typical of two-dimensional systems with two or more steady equilibrium 
positions. Therefore, we first consider, in more detail as compared with 
ref. 6, the method of local expansions in polar coordinates and obtain 
general expressions for the coefficients of these epansions. Then the specifics 
of the problem will be taken into account. 

2. THE M E T H O D  OF LOCAL E X P A N S I O N S  IN POLAR 
C O O R D I N A T E S  

Let us write the stationary Fokker-Planck equation 

c~SP c~SP c~SP c~ c ~  
U11~x~ + ZU12 0x-~--~+ N22 0x 2 Ox~ K1P-~xz  KsP=O (1) 

in the vector form (for convenience of comparison with the results of refs. 6 
and 7, Ni: differs by 1/2 from the form used conventionally) 

0 1 

\1)  \ 0 e/~xsJL\Nlz N22)\ 0 \K2(x)) 
(2) 

On carrying out the change xl = r cos (o, x2 = r sin cp, we have 

( - -  o s  q~ ~ - s m  ~p r & 0 
/ ~  1 ~- 

0 sin q~ ~r + cos (o r 

Let us seek P in a form that yields the exact solution (III), 

P=Nq~((o)r~exp[ - U~(q~)r- Us(q~)r 2 . . . . .  Un(q~)r = . . .]  (3) 

Substituting (3) into (2), we obtain the following chain of equalities for 
equal powers of r: 
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(l~Tl~)fyk-l(kN'1 N--12~( ~ ~ - 0  (4) 
\1/  ( \km21 N22J\O4/~qoJJ 

(:)Tj~{rk+l [((k+2)Xll /VI2"~( ~U2 "~+~)(K~_~gl (KT" ~ 
(k + 2)~V21 N=/kO((~Ua)/&o/ \K{/ 2K~ 

~e(k~Vx1 ~_12 V ~ ) ((k+~>v11 ~,2)( ~u1 )~l 
+ T \kN:, N22)kO()/a~o,/- U, t ( k  + 1)N21 N22/ l \a (q~Ul) /&o/JJ  = 0 

: (6) 

(l~TlS(rk+~[((k+n+l'N21 N_-12~( ~)gn+I ~ //F~+I'~ ") 
\ l j  I. 

Here 

(7) 

N21 

( F7+1~ = 
g~+l/ 

~/12~ ___ (Nll N12~(cos ~9 - s i n  ~o] 

/VI1/] \N12 N22/ksin (p cos cp / 

=( 11 o ,+ 12sin, 
\N~2 cos qo + N22 sin ~o - N ~ 2  sin qo + N22 cos 

(8"+l/&'+l)(e-V)o + (n+ 1)! U.+l 
(n + 1)! 

((k-}-H-{-1)J~ll N-21~( ~ 
x _ (k-k-r/+ 1)P7/21 N22/t\(~/~o/] 

n~, 1 l (g(-N12((~Ui+l/t~go)~ 
+q5 (n--i)! \K~ + m22(aUi+1/a(p)/I i=O 

x ~ (e- U)o + () \ Kg/ 

0" 0" v 0" -V(r )  ,=o 
Ky = 0r---- ~ (K,)o ; ~ r  ~ (e )o = ~ r  ~ e (8) 

It is seen that  the n th  equa t ion  of the above  chain depends only on Ui 
with i~< n, so that  the whole chain can be solved sequentially. 
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Let us now perform in (4)-(7) the operation /) in explicit form and 
n. equate to zero the expressions preceding r , we obtain 

.Nll + N22 
2 

.Nll + N22 
2 

f ) r + (k-1) f'O' + INH + N22 k2 + (k- 2) kf] (9) 

(10) 

( NH+N22 ) 
2 f (r162 

N11+N22(k+l)2+k(k+2)fJ(r (11) 
+ 2 

Nll -t- N22 ) 2 f (Og.)"+(k+n-1)(r 

INl~ +N22k+n_l)Z+(k+n_2)(k+n)f](OU.)=F. (12) + 2 

where 

NI 1 - -  N 2 2  
f -  2 cos 2cp + N12 sin 2cp 

and 

r /F,~+I\ 

In (8)-(12), let us make the substitutions 

(13) 

and 

OU. = yT(k +n)/2Un (14) 

where 

)7= Nll sin 2 ~o- 2N12 sin ~o cos q~ + N22 COS 2 (~0 ( 1 5 )  



2D Fokker-Planck Equation 1011 

Then the equation for ~b and the nth equation of the chain are reduced to 
the form 

where 

k232 
u~+ +u'~+----~-uo=O (16) 

u, wTun+ ~2n)~ZAzu,= F, (17) 

A 2 = N11N22 = 2 2 ~ -  NIlN22(1 - p2) 

p is the correlation coefficient, - 1  ~< p ~< 1, and therefore A2)0. 
It can readily be seen now that all un and u 0 are determined from the 

linear equations of one and the same form whose left-hand sides differ only 
in the number n. It is noteworthy that the homogeneous equation 
corresponding to (17) has an exact fundamental system of solutions 

Ul=sin[(k+n)AF], Uz=COs[(k+n)AF] 

where 

F(qo)=fdq) l {arctgF(N11~l/2 tgq0 p 
---f=-J (1-p2) '/2 (1 

- a rc tg  [_N22 (1 _p2)1/2 (1-p2)l / i  (18) 

where the integration constant is chosen such that the limiting transitions 

1 1 
lim F =  tg q), lim F -  ctg (p 

Nil  ~ 0  N22 N 2 2 ~ 0  NIl 

as well as some other transitions (see Appendix A) are realized so that all 
the equations of the chain are really solvable by quadratures. Moreover, as 
will be seen from the following, they are even solvable by elementary 
functions. It should be noted that this result is rather general, since the 
form of the equations in the chain and their solvability result only from the 
linearity of the Fokker-Planck equation and the two-dimensionality of the 
problem being considered. Considering, by induction, expressions (8) for 
Fn, one can easily see that they represent algebraic combinations 
{sin[(k + n) AF], cos[(k + n) AF] }nU__o originating from the corresponding 
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N U, and [sin ngo, cos ngo]~= o originating from the corresponding K" for 1,2 
each fixed N, and making use of the identities 

sin go = yl/2( CSl u I + CS2u2) 

COS go =fl/2(C~'Ul --}- C~u2)  ( k + n  = 1) 

f =  [(c~ul + C~u2)~+ (c~,  + c~2)~] -~ 

(19) 

(20) 

(21) 

(the form of the C~, C~, C~, and C~, which are functions of only N,2, Nu ,  
and N=,  and the proof of (9)-(12) are given in Appendix A), we come to 
the conclusion that the solutions of all the equations of the chain are 
functions of AF(go) only. The dependence of AF(go) is given in Fig. 1. It is 
seen that any solution of a two-dimensional Fokker-Planck equation with 
boundary conditions specified for different intervals (lrc, { l + l } ~ ) ,  
l = 0, _+ 1, _+ 2 ..... in the limit N 2 2 - - ~  0 will be discontinuous. A continuous 
limiting solution of the type (III) can only be obtained by specifying the 
boundary conditions within open intervals (In, { /+ 1 } n). 

Physically, this corresponds to finding a system with probability 1 in 
any one interval being considered, i.e., if at the initial instant of time the 
system was in the sector 0 < go < ~, then at all t < tl, where tl is the first 
passage time to the line go=0, go=g, the limit l imu22~oP(t) will be a 
continuous function of go. Clearly limt ~ ~ l imu= .  0 P(t) will be the same. 

-2ff - ff 
i I 

j 
g ,~O" 

/7" 

-20 

Fig. 1. F as a function of go. The smooth curve corresponds to N21 #0.  The broken step 
curve is limu=~o F(go). At the points +nn, n = 1, 2 ..... limu=~ 0 F(go)=F(O)+__nn. 
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3. CHECK OF L IM IT ING T R A N S I T I O N S  FOR P 

Let us now proceed to the calculation of an approximate expression 
for P at small but finite Nee. We restrict ourselves, in the expansion of U, 
to the first two terms U~ and U2. In order to formulate the boundary 
conditions and uniquely define ~b, Ux, and U2, consider their limiting 
expressions, which are known from (III) for the limits of 

lim ~b = Isin ~ol k (22) 
N22 ~ 0 

lim U I = 0  (23) 
N22 ~ 0 

lim U2 = 1/2Nll  (24) 
N22 ~ 0 

From the expression for ~b and the form f of (15) we find that 
limN2~0 U~ = const, which can be assumed equal to unity. Thus, 

lim u~= 1 (25) 
N22 ~ 0 

All the limiting expressions (13)-(25) have one feature in common: 
they are analytical functions of the angle (o for all values with zero 
derivatives of all orders. Choose e > 0 and consider the boundary ~0 = e, 
~o = n - ~. At times t < t~, where tl is the first passage time of the boundary, 
at N22 ~ 1, P will be close to the limiting expression. Since the boundary 
~o = 0, ~o = ~ in unreachable at N22 = 0, the tending of ~ to zero corresponds 
to the tending of t to infinity. Consequently, 

lim lim P = t i m  lim P 
t ~ o O  N 2 2 ~ 0  ~ 0  N 2 2 ~ 0  

The specifying of boundary conditions at N22 ~ 0 at the boundary ~0 = e, 
cp = 7r - e for P equal to the corresponding values of the limiting expression 
(III) is in agreement with the consideration of the problem at times t < t~. 
As indicated above, the limiting expressions (23)-(25) are analytical in ~p 
and have zero derivatives of all orders. To uniquely define the solutions of 
the equations of the chain (9)-(12), only two conditions are required for 
each equation, because they all are second-order equations. The question 
arises: derivatives of what order should be zero at the boundary ~o = e, 
(o = ~z- ~ as boundary conditions? Direct calculations show that the boun- 
dary conditions 

u ( N ) (  ~ ) = u(U)( ' lr ,  - -  ~, ) ( 2 6 )  

U~N)(e) = u}N)(~z -- e) = 0 (n = 1, 2,...) (27) 

822/52/'3-4-32 
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give the solutions U(bN, UnN , which have the same limits at N22 ~ 0 for any 
N. It turns out that the order of derivatives in the boundary conditions of 
(26), (27) is associated with the expansion accuracy in the vicinity of q~ = 0, 
~o--n. It is enough to show this only for cp = 0. 

The Taylor formula for the N-fold differentiated functions is of the 
form (8) 

1 
u .  = u . ( o )  + u'o(o) o + . . .  + - 7  

n l  
(28) 

where e is related to q~ through the relation ~ = 0~0, (0 < 0 < 1 ). The equality 
u(,NI(e) = 0 denotes that the remainder in (28) is discarded and the exact 
formula (8) is replaced by a o-approximate formula. 

Expressing q~ in terms of e and 0, substituting into (28), and discarding 
the remainder, we find that for given ~, and therefore for given tl, Un will 
be specified on the line q~ = 0 by the approximate expression 

(o; 1 U(, N- 1)(0) (29) U . ~  U.(O)+ U'.(O)~+ ... -~ ( n -  1)-----~ 

In further calculations we restrict ourselves to expression (29) in the 
first order in e, i.e., we assume N =  2 in the boundary conditions (26), (27). 
Note that according to the formulation of boundary problems for 
fluctuating systems (see, for example, ref. 9), the boundary conditions at 
unreachable boundaries must be calculated rather than specified. The struc- 
ture of the function U near the boundary exactly satisfies this requirement 
[at e = 0  the boundary conditions are lost and only U(0), which is 
calculated, remains]. 

The solution of the inhomogeneous equation (16) is of the form 

ur = cos(k AF) + C o sin(k AF) (30) 

Here only one constant Cr is left to be determined. This is because the 
second constant can be included in the normalization factor. Writing the 
boundary conditions of (26) for N =  2, we obtain the equation for deter- 
mining C~ : 

u~(e) = u~(rc - ~) (31) 

Differentiating (30) twice with respect to ~o, substituting into (31), and 
solving for Cr we obtain 
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f f ~ ( e )  s in [k  AF(e)]  f l ( n _  e) s in [k  A F ( ~ -  e)]  

X (7~, l(g) cos[k AF(g)] tj1~2(G) 

~sin[  _k AF(e)]  

+ k J  L 

Using expression (15) for f ,  

and for f l ,  

7 1 ( = - e )  
- c o s [ k  A F ( n  --  e)]  ~2(~__ ~) 

sinEk 

~7(e) = Nll  sin 2 e - 2N12 sin a cos e + N22  COS 2 g 

aT(Tt -- e) = N11 sin 2 a + 2N12 sin g cos e + N22 cos 2 g 

(32) 

(33) 

(34) 

? l ( g )  = ( N i l  _ N 2 2 )  sin 2g - 2N12 cos 2g (35) 

71(7[ - g) = - ( N i l  - N22 ) sin 2e - 2N12 cos 2e (36) 

as well as expanding  s i n ( k a F )  and c o s ( k d F )  into series in A,~V~/2 "'22~ we 
obtain  

C o ~ A k [ F ( e )  - F(rt - ~)] 

and taking into account  the app rox ima te  expressions for F(e), F ( r c -  e), 

F ( e ) = ( - N l l t g e + N 1 2 )  -1, F ( r c - g ) = ( N H t g a + N 1 2 )  -1 

obta ined  by expanding arctg x and using expression (18) for F ( x )  at large 
x, and their sum and difference, 

+ r ( z  - = 
2N12 2Nll  tg g 

N~ 2 _ N2 ' tg 2 g,  F(g) -- F(Tt -- e) = -- N22 _ N21 tg 2 r 

(37) 

~ / 2  Hence  " ur = 1, which we see that  C~ tends to zero at fixed e as , , = .  llmN22 ~ o 
coincides with the required limiting value (25). 

N o w  proceed to the solut ion of Eq. (10) for U1 [or ,  respectively, (17) 
for U~ ]. Subst i tut ing into the expression for F~ bo th  K ~ = M and K ~ = 0 for 
the.' p rob lem at hand,  we obta in  

F 1 = M(k~b cos ~o - ~b' sin ~o) (38) 
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Replacing cos q~ and sin ~0 by their expressions in terms of sin(AF) and 
cos(AF) according to (19) and (20), we obtain the right-hand side of 
Eq. (17) for Ul, 

Mk 
y- (k+3) /2F,=~f-~{Cccos[(k- t )AF]+C~sin[(k-1)AF]}  (39) 

Here Cc and Cs are functions of only N~, N~2, and N22 and they are of the 
order of ~1/2 Their expressions as well as the proof of equality to zero of 

" ' 2 2  " 

the coefficients of cos[(k + 1)AF] and sin[(k + 1)AF] in (39) are given in 
Appendix A. It can easily be seen that a particular solution of the 
inhomogeneous equation (17) with the right-hand side of (39) for u~ is the 
equation 

M 
u ~ p , = ~ y { C c c o s [ ( k - 1 ) A F ] + C s s i n [ ( k - 1 ) A F ] }  (40) 

It is more convenient, however, to use as a particular solution the 
expression 

ulm =~A-7 Cc sin(k AF) sin(AF) 

AF k -  1 1 { s in [ (k -1 )  s in [ (k+l )AF]} )  (41) ] 

which has the order ,,22M1/2, while ulp~ in (40) has the order N -m22 , and 
therefore tends to infinity with N22 tending to zero. This expression is 
derived by subtracting from (40) the solutions of the homogeneous 
equation s in[(k+ 1) AF] and cos[(k+ 1) AF] with the corresponding 
coefficients. Then the general solution of (17) for n = 1 will be of the form 

Ul=Clcos[ (k+l )AF]+C~s in[ (k+l )AF]+u~m (42) 

Using expressions (13) and (14) relating U 1 and U1, and ~b and ur we 
obtain the expression for UI: 

U1 = fl/2ux/u~ (43) 

We obtain from the boundary condition of (27) a system of linear algebraic 
equations with respect to C~ and C~" 

A,( )cl + = 

A 1(~ - e) CI + BI(~ -- e) C~ = Dl(rc - e) 
(44) 
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AI(qO)=F(Yl/2(q))Y ' (k+l)2A-----Z]cos[(k+ 1)AF(q~) 
L\ u+(~o) / 7'/2(~o)u+ A 

fm(qo) sin[(k + 1) AF(~o)] (45) 

] - -  sin[(k+l)AF(q~)] 81(~o) = L\ u+---~) f3/2(~o) u+(~o)J 

<.+,,.(&). 
q 71/2((p) cos[(k + 1) AF(qo)] (46) 

(U2p2(O)) fll2(q))~,, (47) D,(~)=-\ ~ ( ~  j 

One can easily evaluate the behavior of A1, B1, and D, at A ~.,22~I/2 ~ 0 :  

A ~(~o) ~ _ ~ / 2  sin 4o cos[(k + 1) AF(~o)] ~ const (48) "' 11 

Ba(~o) ~ _~/2.,H sin ~o s in [ (k+  1) AF(~o)] 

~t/2 ~ ~1/2 (49) ~A(k+l)F(q~)sinq~,11 ~.22 

d e t ( A , ( e )  Bl(e) 
\ A l ( g - - ~  ) B1 (/I: -- g)// 

~ N I ,  sin~ sin{(k + 1) A[F(e)-F(~-e)]}  

( k +  1)N~ sin e tg e 7V1/2 (50) 
.-~ 2A N21 tg2 e _ N 1 2 2  " 22 

DI(~)  ~'227vl/2 (51) 

by virtue of the special choice of the particular solution (41); 

det ( D I ( E )  BI(G) ~ ~' N22 (52) 
\z)l(~-~) n~(~-~)) 

by virtue of the above estimates (49), (51); and 

det(A,(~) DI(~) ~as,/2 (53) 
\AiOz-e)  Di(~-e)J  "22 
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by virtue of the estimates (48), (51). Then from (50) and (52) if follows that 

Bl(e) " ] / d e t ( A l ( e )  Bl(e) "~~~eu2 (54) 
B1(n-g)J/ \A,0z_e) Bl(n_~)j  "'22 

C 1 - d e t {  DI(~) 
1 -  \D , ( rc -e )  

and from (50), (53) 

C~=det ( A 1(/3) 
\A l ( r c -e )  

Ol(a) ~ / d e t ( A I ( ~ )  B l ( ~ )  ~ O ( 1 )  (55) 
Dl(~--e) , l /  \A l (~- -e )  BlOt-e) , /  

If we now take into account that sin[(k + 1) AF] ~ (k + 1) AF ~u2 ~ - - ~ ' 2 2  ~ 

then U1 ~-,22~em and therefore tends to zero at N22 -+ 0, which just provides 
the required limit of (23). 

Equation (11) in U2 is sollved exacty in the same manner. First 
calculate F2 by substituting into the corresponding equation (8) 
K~ = -cos  ~0 and K 1 = 0 for the problem at hand. In addition, neglect the 
terms ,-~ U 1 ,-~ N22, i.e., consider only the dominant asymptotic term plus 
corrections vl/2 Neglect also the terms ~ M  2, which corresponds to the "~  * '  22 " 

consideration of solutions with maxima close to the origin of coordinates, 
since only for these is the solution in the form of (3) with the first two UI 
and U2 other than zero a good approximation (in principle, this does not 
impose any restrictions on the proposed procedure, but makes the 
calculations less awkward). So, for this case 

F2 ~ ~b + (k~b cos q~ - ~b' sin q)) cos ~0 (56) 

Using expression (38) for F1 written as a function of AF and substituting 
into (56) ~b written according to (13) and (30) and cos q~ written according 
to (20), we obtain the right-hand side of Eq. (17) for u2 

jT_(k + 2)/2F2 ~ 1 -+- kCo/4 cos(k AF) -~ Cr + kSo/4 sin(k AF) 
72 

kC kS . 
+ - - ~ c o s [ ( k - Z ) A F ] + - - ~ - T s l n [ ( k - Z ) d F  ] (57) 

Here Co, So, C- ,  and S -  are only functions of N u, N12, and N22 which 
are given in Appendix A; C o is function in expression (32) for ~b. 

As in the case of ul, one can easily find the apparent particular 
solution: 

C~ + Sok/4 cos(k AF) . Cok cos(k AF) + sin(k AF) 
u2p, = 4 ( k +  1)d 2+ 16(k+ l )d  2 4(k+ 1)A 2 

C-  S-  
+ ~ c o s [ ( k -  2) AF] + ~ s i n [ ( k -  2) dV] (58) 
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which has the order of N~ l at N22 ~ 0 and is therefore unsuitable for the 
calculation of the limiting transition. The particular solution 

1 sin[(k + 1) AF] sin(AF) 
U2p2=-~nc~ 2(k+ 1)A 2 

Co k C- 
+ 8(k + 1)d 2 sin[(k + 1 ) AF] sin(dF) + ~ sin(k AF) sin(2 AF) 

C~ + S~ {sin(k AF) -k -~s in [  (k + 2 ) AF] } 
+ 4(k+ 1)A 2 

+ ~ s i n [ (k -  2) AF] - ~ sin[(k + 2) AF] (59) 

is more convenient. This solution is obtained from (58) by adding, with the 
corresponding coefficients, the solution of the homogeneous equation 
s in[(k+ 2)AF] and cos[(k+ 2)AF]. As can readily be seen, the first two 
terms tend to 1/2N~1 sin 2 q~, whereas all the other terms, as follows from the 

~1/2 does. The corresponding formulas of Appendix A, tend to zero as -,22 
complete solution will have the form 

u2=C~cos[(k+2)AF]+C~sin[(k+2)AF]+u2p2 (60) 

Using expressions (13) and (14) relating u2 and U2, and ~ and u~, we 
obtain 

U2 = aruz/uo (61) 

From the boundary condition of (28) we obtain a system of linear 
algebraic equations with respect to C~ and Cg: 

A2(~ ) C~ + B2(e ) C~ = D2(e) 
(62) 

A2(n - e) C 2 + B2(rc - e) C~ = D2(rc - e) 
where 

Ad'~~ = L\uo(tp),] ~-(~-) u~-~)_l cos[(k + 2) AF(tp)] 

F / \ - 1 1  ' 
- ( k  +2)A L~((o) u~(40) t-2 t u - ~ ) ]  sin[(k+2)AF(q))]  (63, 

B2(,~o)= F(y(q~) ']" (k+ 2)2A 2] Lt, u+(<,o)) 7-~u~-~e)J sinr(k + 2) AF(~o)-I 

(')1 + ( k + 2 ) d  [ ~7'(~o) 1-2 cos[(k+2)AF(q))] (64) 
k]'(~) u+(~) 

D2(~o) : (u2p2a~Y ' (65) 
- \  u---S- / 
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It can easily be seen that the estimates for A2, B2, and 

det{ A2(~) B2(e) 
\A2(zc-e) B2(vt- e)] 

coincide with the corresponding estimates for (48)-(50). 
To show that limN22 ~ 0 Cf = 0, it is sufficient to establish that Dz(O) 

NIle For this purpose, in turn, it is sufficient to show that 22' 

lim 
NZ2~0 \ U~b / 

since U2p=f/% is analytical in ~,22~rl/2. Since all the terms of the particular 
,.~ A/'l/2 solution (59), except for the first two, are ~,22, we have 

lim = lim (jr(~~ ~ 1 
N22~0\ Ur / N22~O\U~{O){2N;1 --~-~ 

sinE(k + 1)~rlo)l  sin[,~V(o)l~X" 
+ 2(k+ 1)A 2 

= lim [ ( j r ( O ) ' ] " ( c o s [ ( k + 2 ) d F ( o ) ]  

sin[,(k + 1)3F(0)]  sin[AF(o)] + 
2(k+ 1)A 2 

1 (7 (O) ' ] ' ( cos [ (k+  1)AF(0)] sin[Ar(o)] 

+ Jr-TDSo~ \ , ,+- r~ / \  A 
sin[,(k + 1)AF(o)] cosEAF(o)]'\ 

+ A ) 
+ Jr(O) (cos[-(k + 1)AF(0)] cosEAF(o)] 

u+(o) \ Jr(o) 
f'(~o) cos[(k + 1)AF(o)] sin[AF(o)] 

2~jr~(o) 
jr'(O) sin[,(k + I)AF(o)] cosEAF(o)]'~l 

2Ajr2(o)(k + 17 )J 
= lim 1 [ ( c~  N~.ONll (c~ 0--sin2 0) 1 + ~ )  

COS2 O C02 O 7 
- 4 s i - - ~ - + 3 - - + l j  =0  sin2 O 
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So, Dz(fp) ~ Mu2 Hence, as is the case with (54) and (55), we obtain for C 2 ~'22 " 

and C2 2 

( D 2 ( 8 )  
C 2 = det \D20 z _ e) 

( A z ( g )  
Cy = det \A2(n --~) 

B : ( ~ - ~ ) / /  \ A : ( ~ - ~ )  

)/det 
D2(rc-e).// \A2(Tt-- c ) 

Be(e) \ 

2tzc- e U 

(66) 

If now we take into account that the first two terms of (59) tend to 
1/2N~ sin 2 (p and all the other terms in the solution (60) tend to zero, as 
indicated above, we obtain, for (61) at N22--,0, the required limit (4), 
1/2N11. 

It follows from the form of the exact limiting solution (III) that 

lim U. = 0 (n ~> 3) (67) 
N22 ~ 0 

Using the method of mathematical induction, we show that Un obtained 
from Eqs. (12) actually has such a limit. Expression (18) for F(qg) and the 
structure F.  in expressions (12) enable us to state that all U. are analytical 

~ / 2  it is functions of ~Vl/: Consequently, for U. to be of the order of ~.:2 ~" 22 " 
necessary and sufficient that the limit (67) be met. Also, if we manage 
to show that F . ~  arl/z then, using a technique similar to that used in ~'22 ' 
obtaining the partial solution Ulp 2 in (41) and u2p2 in (59), we can form the 

~rl/2 and exactly show, as in the case of C~ in (54) partial solutions u.p~ ~, 22 
and C 2 in (66), that c ' .  ~1/2 ~1  ~ ' 2 2 "  

So, taking into account that U~ ,-~ 7v~/2 ,,22, we obtain for the dominant 
asymptotic term of F 3 

7- _ sin2_~ _ U2 M])~. r_ ~ 
F 3 ~ { ( l l )  /)~b( sin~0cosrp / j  

�9 F,~(u~,~) 7 04, 
= M [  &b s i n ~ o - ( k + 2 ) c o s o ( U 2 ~ b ) j + s i n q ~ - - ~ + c o s q ~ b  

whence 

l i m  F 3 = ( k q -  1 - M / N i l  ) c o s  r s in k ~p 
N22 ~ o 

(68) 

Obviously, for the limit (68) to be equal to zero at any r it is 
necessary that k=M/N~I -1 ;  or, comparing with the exact limiting 
solution (III), we note that k coincides with the limiting value. We can 

•1/2 make sure, however, that it is impossible to eliminate the terms ~..22 
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in the expression for F3 with the aid of k, which depends only on 
the parameters of the problem, but not on 4o. So, the obtained value of k 
is the best that can be attained approximating the sought solution by 
expression (3). 

The next step of reasoning on induction should be made separately for 
even and odd n. In (8) let n = 2 l -  1. Then from formula (B.4) of Appen- 
dix B and from the assumption that all U, r, ru2 (1 ~< n <~ 2 l - 1 ,  n ~ 2) it 
follows that the dominant asymptotic term in (8) ~O(1 )  is of the form 

/ N  I-cos 4o(k+ 2/)/~92'e-U\ sin 4o , (&21e-U'] \ \ [ "L-  TJo) 
(F~"~ [ ~;bcos 4O i~2t-2e-U\ 7 
\F~X.]~-I +(--2-~--~'t Or"~~-2 )oJ 

0 

(69) 

Equation (69) also takes into account that for the given problem 
KI = - c o s  40, K~ =0,  and K~', K~' = 0  (n~> 3) and the form of N,j. Because 
only terms consisting of products of Uz can be of O(1), we obtain from 
formula (A4) of Appendix B for dominant asymptotic terms 

&2%- u~ 
~---~-T- ] ~ ~ C~,_, C~,_ 3 �9 - - CJ( - 2U2) 2, (70) 

&2l 2 -- U) 
~r--~_ z e o~ C~,_ 3 . . . C~(-  2U2)2' (71) 

Substituting (70) and (71) into (69), we obtain, taking into account that 
CI/-  1 = 2l - 1, 

lira FZt=N22~o~(21_2)" C~,,_,(-2U2)21+(2U2) 2t-x sink4ocos4o 
N22 ~ 0 

x 

_ r k+2'- '  ( 1 )2n- ,  
( 2 n -  2)------~ [C l1 -3""  C~] - ~2z2/ sink4o COS 4O 

x [ N l l ( 2 n - 1 )  1 1 = 0  
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Let now n = 2L Then the dominant asymptotic term for F21+1 ~ O(1) has 
the form 

g21+x~{(11)T~[(gd~ 1 02l 
L\S<:g) (2/)! Dr 2, (e-V)~ 

+\K~/ (21_2) !Or21_~(e-V)o  r k+;~ r ~-2~+~ (72) 

Using expressions (70) and (71) and substituting into (72) the expression 
K ~ = M, K ~ = 0, K~ = - s in  2 q~, and K~ = sin ~0 cos q~ for the given problem, 
we obtain 

F 2 l + 1  
(2n - 2)! 

(2n - 2)! 

Hence 

( - 2 U 2 ) 2 n - l l c o s q o M ~ b ( - 2 U 2 ) + c o s q ) ~ J + s i n q g ~ ]  

( -2U2)  2n lcosqosink~o(k+ 1 - - ~ l l )  (73) 

lira F 2 t + l = 0  if k = M / N I I - 1  
N22 ~ 0 

i.e., it coincides with the value obtained when considering the case n = 2. 
So, we have proved that the expression (3) for P in which ~b and U, 

are obtained under boundary conditions (26) and (27) really tends to the 
limiting exact solution (III) with all additions to the limiting exact 
expressions for ~b and U, 7vl/2 The last result comes from the fact that the ~ ' 2 2  " 

correlation coefficient /9 is nonzero. With p = 0 it can easily be checked, 
that all additions have the order of N=.  

4. E V A L U A T I O N  OF A P P R O X I M A T E  S O L U T I O N  ERROR 

Let us now evaluate the error which we make by leaving a finite 
number of terms U, (n = 1 ..... N) in expression (3) for P. If we substitute 
the difference AP=P-Papprox  between the exact solution P and the 
approximation (3) into the initial equation (2), then, due to the linearity of 
the Fokker-Planck equation, 

Lvp A P = -- Lvp P approx (74) 

where LFp is the linear differential operator of Eq. (2). Expanding the 
analytical part Papprox into a Taylor series at zero with the remainder in the 
Lagrange form and substituting into (74), we obtain 

1 90 ] 
Lvp AP = (N+ 1)! LFP LO-~ - ~  P"PPr~ r~ + N + I  (75) 
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where 0 < ~ < r. Due to the fact that the first N terms of the expansion in 
(75) are equal to zero under the conditions of finding the functions Un 
(n = 1 ..... N), it follows from the above estimates of U, and their structure 
that in the interval (e < ~0 < rc - 5) all U, (n = 1 ..... N) are bounded and they 
all have bounded derivatives with respect to ~0. Then, taking into account 
that Lw,  causes the power of r to decrease by 2, we may write the estimate 
uniform in the interval stated 

r k + u -  l(k+ N +  1)(k+ N) 
ILFp AP[ <. ~ ( r ) C  1 (76 )  

( N +  1)! 

the power of 6(r) being not lower than the power of K, and K2. Taking 
into account the analyticity of Papprox in ..22~'/2 and the tendency 
Papprox ~ N22 ~ 0 P ,  w e  may write 

~ ] - l / 2 r k  + U --  , (k -t- N + 1 )(k + N)  6(r) C 2 (77) ]LFp APt ~< " '22 " 
( N +  1)! 

It is seen from (76) and (77) that the local error [-r < R, where R is the 
radius of the convergence circle of the series ~2 U, rn ; the convergence itself 
follows from Kovalevskaya's theorem, the conditions of which are satisfied 
by Eq. (1) with boundary conditions (26), (27)] decreases at both N22 ~ 0 
and N ~ ~ ,  i.e., with increasing number of calculated U,. Setting the first 
derivative with respect to r from expression (3) with two calculated U, and 
U2 equal to zero, we obtain the equation for the maximum curve: 

U,(~0) + [  U~(q)) k ],/2 
rmax= 4 g2(ep~) L + (78) 

If we refer to the estimate of (77), we may say that the distribution function 
maximum is well approximated at small M, N22, and k [see (43) for Ut], 
i.e., in the cases where the maximum lies in the vicinity of the expansion 
point r = 0, which agrees with the locality of the expansions used in the 
present paper. 

5. C O N C L U S I O N  

The results obtained in the present paper may be of interest for 
systems with more than one position of equilibrium. In this case, at noises 
smaller in the direction between these two states and at times shorter than 
the first time of leaving the region of most probable stay, the distribution 
function will have the form similar to that obtained by specifying the bun- 
dary conditions of the type (26), (27). And if we take into account that the 
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time of observing the system is always finite, the obtained intermediate 
asymptotic distribution function describes the situation more realistically 
than the true stationary distribution function does. 

A P P E N D I X  A 

In this Appendix, relations (19)-(21) are derived and the coefficients 
Cc and C, entering into expression (39) and Co, So, C - ,  and S -  entering 
into expression (57) are calculated as well as their equality to zero at 
sin[(k + 1)AF] and [ ( k +  1)AF] in expression (39). 

Relations (19)-(21) result from observing the fact that Eq. (12) at 
k =  1, n =  1, and a zero right-hand side is the equation of harmonic 
vibrations 

+ = 0 (A. 1 ) 

where U=~bU1 (k=0) .  By replacing (14) at k = 0 ,  ~U=fl/Zu, it is reduced 
to an equation of the type of (17), 

U " +  ~' u' A2 
7 + 7  ~ u = 0  (A.2) 

which has fundamental solutions A -1 sin(AF), cos(AF). By replacing (14), 
the solution of (A.1) may be expressed as a linear combinations of these 
solutions, namely, sin ~0 and cos (p. For sin (p we have 

= sin q~ = fl/2u, u = sin ~off m 

U ' =  cos ~0 = 7'u/Zf vz + f mu' 
(A.3) 

u ' =  cos ~o - j r '  sin ~0/2j ~ 

= (N22 cos (p - N12 sin q~)/)7 

Any solution of (A.2) is expressed as a linear combination of its fundamen- 
tal solutions 

u=C~A ls inAF+C~cosAF 
(A.4) 

u' = (C~ cos A F -  AC~ sin AF)/j 7' 

Equations (A.3) and (A.4) must hold at any q)= ~z. Then 

CfA -i sin[AF(e)] + C~ cos[AF(c0] = sin e/jT,/2(e) 

C~ cos[AF(e)] - Cj zl sin[AF(~)] = (N22 cos ~ - N12 sin ~)ffvz(e) (A.5) 

A 1 sin[AF(e)] cosI-AF(c0] 
det cos[AF(c0] - A  sin[AF(e)] = - 1  
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from which we obtain 

C~ = {A sin ~ sin[AF(~)] + (N22 cos ~ - N12 sin ~) cos[AF(~)] }/fl/2(~) 

C~ = {A sin ~ cos[AF(~)] (A.6) 

- (N22 cos 7 - N12 sin ~) sin[AF(~)] } / A f m ( 7 )  

For further transformations of C~ and C~ we write the explicit form 
AF(~) accoding to formula (18): 

AF(~) = ~(~) - ~b o (A.7) 

where 

~(~) = arctg Njj 1/2 tg ~ p ] 

[ ( U l l ' ~  1/2+e 1 p ] 

~b~ [_k~J (1 --02) 1/2 (1 _p2)1/2 (a.9) 

is chosen later on the basis of the conditions of realizing the necessary 
limiting transitions. 

Substituting (A.7)-(A.9) into (A.6) and taking into account the 
formulas 

sin(arctg A) = A(1 +A2)  -1/2, cos(arctg A} = (1 + A  2) 1/2 

we obtain 

s g ]~/'1 + e ~]e  2~ C1  ~-- ~.~'22 --*'11NI2)[N~l + -2p(N11N22) 1/2+a-'t-lv'l+2eq-1/2"*'22 A 
(A.IO) 

~Ve I"~1 + 2~ C~  = , ,  l l L a ,  11 -2p(NI1N22)l/2+e-.}-N1~2e] -1/2 

As expected, the relations (A.10) are independent of e. 
Now check that 

lim ~" = sin q~ 
N22 ~ 0 

That is, relations (A.3) also hold in the limiting case. Then 

lim ~ '=  NI/12 sin ~o( - C~Ns ctg q~ + C~) = sin ~o 
N22 ~ 0 

Absolutely analogous calculations for U =  cos q~ yield cos r ~ - 7 1 / 2 u ,  where 

u = C~ A -1 sin(AF) + C~ cos(AF) 

C,.~1/21~el/2 + ~,~ _ v1/2 + ~) [ NI + 2 ~ :  _ _  2p (N  n N22)1/2 +e q_ N~2+ 2, ] -1/2 l~Vll  i~,  2 L, * '11  

C2__,,22L~,IlC__~r~ r}~] l+2e  _ 2p(NllNii)l/z+~+N~-2e] 1/2 
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Requiring that the transition limN22~o U =  cos r be realized, we obtain 

lim ~ '=  ,,11~1/2 sin r C~Nll x ctg r + C~) 
N22 ~ 0 

whence it is seen that the second term in the parentheses must be equal to 
zero, which is possible only in the case where ~ is any number strictly 
greater than zero. For convenience, we henceforth take e = 1/2. Let us show 
how (39) is obtained from (38) and calculate Cc and C~ entering into (39). 

Substituting the expression for ~b, according to (30), into (38), we 
obtain 

F1 = M(k(~ cos r - ~b' sin cp) 

= Mk f k / 2 -  2{ [N22 cos r - (N12 + AC~) sin r cos(k AF) 

+ [CoN22 cos r - (C~NI2 - A) sin ~p] sin(k AF)} (A.11) 

Substituting into (A.10) sin ~p and co ~p expressed as sin(AF) and cos(AF) 
according to formulas (19) and (20) and rewriting, using identities of 
elementary trigonometry, the products of trigonometric functions in terms 
of functions of the sum and difference, we obtain 

F 1 = 2 - ~ M k f  (k- I)/2[R c cos[(k + 1 ) AF] + Rs sin[(k + 1 ) AF] 

+ Cc cos[(k - 1) AF] + Cs s i n [ ( k -  1) AF] (A.12) 

where 

Rc = (C~N22 - C~Nt~ - C~) + C;(N,2A -~C~ - N22A - 'C~ - ~C~) 

~'[M3/2 7~'1/2 Ar A/'3/2 + N1/22Nllp ) 
i,\~,22 --av11 ~*12--1.22 

~_ C0 A -1 1/2 2/2 A2 A]I/2] N22N11 (N22P NH)-- ' - '  ~'H J} [N12N22 (Nz2 - NH p) -- 

• (N2~ - 2pNllN22 + W~2) -~/2 =-0 

R~ = ( C~ A -1N22 - C~ A -1N12 -k- A C~ ) "b C ~( C~ N22 - C~ N12 - C~ ) =-0 

Cc = (N22 C~ - N~  C~ + C] ) + C~ A - I (N~ C~ - Nlz C~ - A ~C~) 

~/~ r ^r - NI~ p - C~ Naa (1 - p ~) ~/~ ] = 2  ~'22 LZ'22 
( W ~ l  - 2pNll  N2~ + N~2) 1/~ 

2N~/~2 [N2= - N ~  p + CoN,~(1 - pZ)m] 
C, = (W2~ - 2pNH N2= + W~=) ~/2 

Similarly, (57) is obtained from (56). In this case the coefficients Co, So, 
C - ,  and S -  have the form 

C-  =CcC~-~CsCClzJ-1; S -  =CsC~-CcCClz~ -1 
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A P P E N D I X  B 

In this Appendix the general expression for d~exp[q~(x)]/dx n is 
derived which is used in calculating the limits and estimating errors in Sec- 
tion 3. This formula is also useful in calculating the series convergence 
radius in nonlinear approximations of the type of formula (3), because it 
has an explicit dependence on n. Hereafter the designation dny/dx ~ = y(nl is 
used. 

Using the Leibnitz rule, (81 we can write 

n - - 1  
(e~(Xl)(,l=(e~O@11)("-11= ~ C~_m(e~~ k+ll (B.1) 

k = O  

Let us do this once again: 

n - - k  2 

(ee)(, k-,)=(e,Pq0(1))(,-k 21= 
k ' = O  

Cn_k_2k' ( e q ' ) ( n - k  ' k - - 2 ) ~ o ( k ' + l )  

(B.2) 

Substituting (B.2)into (B.1), we obtain 

n- -1  n k - - 2  
(e~)(-/= ~ ~ C k l C k ' k  2(e~) n -k ' -k  2 q ~ ( k + l ) q )  ( k ' + l )  (B.3) 

k = O  k ' = O  

It is seen that in (B.3) the derivative indices are always ~<n- 2. Proceeding 
in this way until a derivative of zero index is obtained and making the 
necessary rearrangement of the terms, we obtain the final formula: 

(e~O)(m = e~O k - 1)q0(k + 11 
0 

n - - 2  n - - k  3 
( ' k '  rr~(n -- k -- k ' - -  2)rn (k' + 1)q) (k + 1) 

k = O  k ' = O  

n - - 2  n - - k  3 n - - k - - k ' - - 4  

+2 E E 
k = O  k ' = 0  k"=O 

)< ~o(k' + 1)~o(k + 1)~o(k" + 1) 

n - - 2  n - - 3  n - - n  

+ - - +  E E E  
k = O  k ' = O  k(n) = 0 

k k'  k" in(n - k - k ' - k ' - 3 )  
C n _ l C n _ k _ 2 C n _  k k ' _ 3 ~ v  

3 
c ~ c~176 2 

_1 
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